HKGBC Retrofitting Hub List of Terminology | 1. | COP_CH | Coefficient of performance of chiller | |-----|--|--| | 2. | COP_CH _{PRE} , | Coefficient of performance of chiller before initiative | | | COP_CH _{POST} | implementation (PRE) | | | COP_CH _{SM} , | Coefficient of performance of chiller after initiative | | | COP_CH _{WN} | implementation (POST) | | | _ | Coefficient of performance of chiller during summer (SM) i.e. | | | | MAY to OCT | | | | Coefficient of performance of chiller during winter (WN) i.e. DEC, JAN & FEB | | 3. | COPa _{SM} , COPa _{WN} | interpolation on Coefficient of performance of chiller by part | | | | load ratio during summer (SM) i.e. MAY to OCT and winter | | | | (WN) i.e. DEC, JAN & FEB | | 4. | COPb _{SM} , COPb _{WN} | interpolation on Coefficient of performance of chiller by | | | | condensing entering temperature during summer (SM) i.e. | | | | MAY to OCT and winter (WN) i.e. DEC, JAN & FEB | | 5. | TWCC _{SM} , TWCC _{WN} | Condensing entering temperature of water-cooled chiller | | | | (WCC) during summer (SM) i.e. MAY to OCT and winter (WN) | | | | i.e. DEC, JAN & FEB | | 6. | TACC _{SM} , TACC _{WN} | Condensing entering temperature of air-cooled chiller (ACC) | | | | during summer (SM) i.e. MAY to OCT and winter (WN) i.e. | | | | DEC, JAN & FEB | | 7. | OPHR,yr | Annual operating hours of equipment / system (hrs) | | | OPHR _{PRE} ,yr | Annual operating hours of equipment / system (hrs) before | | | OPHR _{POST} , yr | initiative implementation (PRE) | | | | Annual operating hours of equipment / system (hrs) after | | | | initiative implementation (POST) | | 8. | QBLDG | Annual average instantaneous building cooling load (kW) | | 9. | QBLDG _{PRE} , QBLDG _{POST} | Annual average instantaneous building cooling load (kW) | | | | before initiative implementation (PRE) and after initiative | | | | implementation (POST) | | 10. | TCHWS _{PRE} , TCHWS _{POST} | Chilled water supply temperature before initiative | | | | implementation (PRE) and after initiative implementation (POST) | | 11. | QCH _{SM} , QCH _{WN} | Rated cooling capacity (kW) of chiller during summer (SM) i.e. | | | | MAY to OCT and winter (WN) i.e. DEC, JAN & FEB | | 12. | COP_CH _{100%} , | ARI Coefficient of performance of chiller at 100% load | | | COP_CH _{75%} , | ARI Coefficient of performance of chiller at 75% load | | | COP_CH _{38%} | Mean ARI Coefficient of performance of chiller between 50% | | | | and 25% load | | 13. | kW_CHWP _{SM} , | Rated power (kW) of chilled water pump (CHWP) during | | | kW_CHWP _{WN} | summer (SM) i.e. MAY to OCT and winter (WN) i.e. DEC, JAN & FEB | | 14. | kW_CWP _{SM} , | Rated power (kW) of condensing water pump (CWP) during | | | kW_CWP _{WN} | summer (SM) i.e. MAY to OCT and winter (WN) i.e. DEC, JAN | | | | & FEB | | of cooling tower (CT) during summer (SM) winter (WN) i.e. DEC, JAN & FEB) of chilled water pump (CHWP) before cation (PRE) and after initiative (DST)) of condensing water pump (CWP) before cation (PRE) and after initiative (DST)) of cooling tower (CT) before initiative (E) and after initiative implementation | |--| | cation (PRE) and after initiative (PST) of condensing water pump (CWP) before cation (PRE) and after initiative (PST) of cooling tower (CT) before initiative | | ost)) of condensing water pump (CWP) before tation (PRE) and after initiative ost)) of cooling tower (CT) before initiative | | ost)) of condensing water pump (CWP) before tation (PRE) and after initiative ost)) of cooling tower (CT) before initiative | |) of condensing water pump (CWP) before cation (PRE) and after initiative (ST)) of cooling tower (CT) before initiative | | cation (PRE) and after initiative OST)) of cooling tower (CT) before initiative | | OST)) of cooling tower (CT) before initiative | |) of cooling tower (CT) before initiative | | , , | | E) and after initiative implementation | | | | I: | | ling tower (CT) in operation during | | AY to OCT and winter (WN) i.e. DEC, JAN | | | | ler (CH) in operation during summer (SM) | | winter (WN) i.e. DEC, JAN & FEB | | densing water pump (CWP) in operation | |) i.e. MAY to OCT and winter (WN) i.e. | | | | led water pump (CHWP) in operation | |) i.e. MAY to OCT and winter (WN) i.e. | | , , | | of equipment during summer (SM) i.e. | | nter (WN) i.e. DEC, JAN & FEB | | of equipment during summer (SM) i.e. | | nter (WN) i.e. DEC, JAN & FEB before | | tation (PRE) | | of equipment during summer (SM) i.e. | | nter (WN) i.e. DEC, JAN & FEB after | | tation (POST) | | | | ure of condenser of water-cooled chiller | | plementation (PRE) and after initiative | | OST) | | centralised chilled water pump (DCHWP) | | summer (SM) i.e. MAY to OCT and winter | | & FEB | | f de-centralised chilled water pump | | nmer (SM) i.e. MAY to OCT and winter | | & FEB | |) of de-centralised chilled water pump | | , at the contraction of the tracer partie | | tiative implementation (PRE) and after | | · · · · | | tiative implementation (PRE) and after | | tiative implementation (PRE) and after cation (POST) coil unit (FCU) in operation during | | tiative implementation (PRE) and after tation (POST) | | tiative implementation (PRE) and after cation (POST) coil unit (FCU) in operation during AY to OCT and winter (WN) i.e. DEC, JAN | | tiative implementation (PRE) and after cation (POST) coil unit (FCU) in operation during | | this returned in the second | | 32. | ΣkW_FCU _{PRE} , | Average power (kW) of fan coil unit (FCU) before initiative | |-----|---|--| | | ΣkW_FCU _{POST} | implementation (PRE) and after initiative implementation (POST) | | 33. | NAHU _{SM} , NAHU _{WN} | Average Nos. of air handling unit (AHU) in operation during summer (SM) i.e. MAY to OCT and winter (WN) i.e. DEC, JAN & FEB | | 34. | kW_AHU _{SM} , kW_AHU _{WN} | Rated power of air handling unit (AHU) in operation during summer (SM) i.e. MAY to OCT and winter (WN) i.e. DEC, JAN & FEB | | 35. | Σ kW_AHU _{PRE} , | Average power (kW) of air handling unit (AHU) before | | | ΣkW_AHU _{POST} | initiative implementation (PRE) and after initiative implementation (POST) | | 36. | NPAU _{SM} , NPAU _{WN} | Average Nos. of primary air handling unit (PAU) in operation during summer (SM) i.e. MAY to OCT and winter (WN) i.e. DEC, JAN & FEB | | 37. | kW_PAU _{SM} , kW_PAU _{WN} | Rated power of primary air handling unit (PAU) in operation during summer (SM) i.e. MAY to OCT and winter (WN) i.e. DEC, JAN & FEB | | 38. | ΣkW_PAU _{PRE} ,
ΣkW_PAU _{POST} | Average power (kW) of primary air handling unit (PAU) before initiative implementation (PRE) and after initiative implementation (POST) | | 39. | NDOAS _{SM} , NDOAS _{WN} | Average Nos. of dedicated outdoor air unit (DOAS) in operation during summer (SM) i.e. MAY to OCT and winter (WN) i.e. DEC, JAN & FEB | | 40. | kW_DOAS _{SM} ,
kW_DOAS _{WN} | Rated power of dedicated outdoor air unit (DOAS) in operation during summer (SM) i.e. MAY to OCT and winter (WN) i.e. DEC, JAN & FEB | | 41. | Σ kW_DOAS _{PRE} ,
Σ kW_DOAS _{POST} | Average power (kW) of primary dedicated outdoor air unit (DOAS) before initiative implementation (PRE) and after initiative implementation (POST) | | 42. | NDAHS _{SM} , NDAHS _{WN} | Average Nos. of dedicated air handling system (DAHS) in operation during summer (SM) i.e. MAY to OCT and winter (WN) i.e. DEC, JAN & FEB | | 43. | kW_DAHS _{SM} ,
kW_DAHS _{WN} | Rated power of dedicated air handling system (DAHS) in operation during summer (SM) i.e. MAY to OCT and winter (WN) i.e. DEC, JAN & FEB | | 44. | ΣkW_DAHS _{PRE} ,
ΣkW_DAHS _{POST} | Average power (kW) of primary dedicated air handling system (DAHS) before initiative implementation (PRE) and after initiative implementation (POST) | | 45. | NIECU _{SM} , NIECU _{WN} | Average Nos. of indirect evaporative cooling unit (IECU) in operation during summer (SM) i.e. MAY to OCT and winter (WN) i.e. DEC, JAN & FEB | | 46. | kW_IECU _{SM} , kW_IECU _{WN} | Rated power of indirect evaporative cooling unit (IECU) in operation during summer (SM) i.e. MAY to OCT and winter (WN) i.e. DEC, JAN & FEB | | 47. | Σ kW_IECU _{PRE} ,
Σ kW_IECU _{POST} | Average power (kW) of indirect evaporative cooling unit (IECU) before initiative implementation (PRE) and after initiative implementation (POST) | | 48. | QBLDG _{RAD} | Annual average instantaneous building cooling load provided by radiant cooling system (RAD) | |-----|---|--| | 49. | NSCU _{SM} , NSCU _{WN} | Average Nos. of spot cooling unit (SCU) in operation during summer (SM) i.e. MAY to OCT and winter (WN) i.e. DEC, JAN & FEB | | 50. | kW_SCU _{SM} , kW_SCU _{WN} | Rated power of spot cooling unit (SCU) in operation during summer (SM) i.e. MAY to OCT and winter (WN) i.e. DEC, JAN & FEB | | 51. | Σ kW_SCU _{PRE} ,
Σ kW_SCU _{POST} | Average power (kW) of spot cooling unit (SCU) before initiative implementation (PRE) and after initiative implementation (POST) | | 52. | Δ P_FLT _{PRE} , Δ P_FLT _{POST} | Differential pressure drop of air filter (ΔP_FLT) in operation before initiative implementation (PRE) and after initiative implementation (POST) | | 53. | ΔP_AHUF | Annual average of static pressure of air handling unit fan (ΔP_AHUF) | | 54. | LFahu,pre, LFahu,post | Average load factor of aur handling unit (AHU) before initiative implementation (PRE) and after initiative implementation (POST) | | 55. | OPHR,FC | Annual operating hours of free cooling equipment / system (hrs) | | 56. | QBLDG _{WN} | Annual average instantaneous building cooling load (kW) during winter (WN) | | 57. | QBLDG _{FC} | Annual average instantaneous building cooling load (kW) during free cooling (FC) operation | | 58. | NMVF _i | Annual average Nos. of mechanical ventilation fan (MVF) of each carpark zone (i) in operation | | 59. | kW_MVF _i | Total rated power of mechanical ventilation fan (MVF) of each carpark zone (i) | | 60. | IFA _i | Internal floor area of carpark zone (i) | | 61. | IFA _{CP} | Internal floor area of carpark | | 62. | NCRAC _{SM} , NCRAC _{WN} | Average Nos. of computer room air conditioning (CRAC) unit in operation during summer (SM) i.e. MAY to OCT and winter (WN) i.e. DEC, JAN & FEB | | 63. | kW_CRAC _{SM} ,
kW_CRAC _{WN} | Rated power of computer room air conditioning (CRAC) unit in operation during summer (SM) i.e. MAY to OCT and winter (WN) i.e. DEC, JAN & FEB | | 64. | ΣkW_CRAC _{PRE} ,
ΣkW_CRAC _{POST} | Average power (kW) of computer room air conditioning (CRAC) unit before initiative implementation (PRE) and after initiative implementation (POST) | | 65. | NHVLPF _{PRE} , NHVLPF _{POST} | Average Nos. of computer room air conditioning (CRAC) unit in operation before initiative implementation (PRE) and after initiative implementation (POST) | | 66. | kW_HVLPF _{PRE} ,
kW_HVLPF _{POST} | Rated power of computer room air conditioning (CRAC) unit in operation before initiative implementation (PRE) and after initiative implementation (POST) | | 6- | | (1) A | |------|--|---| | 67. | Σ kW_HVLPF _{PRE} , | Average power (kW) of computer room air conditioning | | | Σ kW_HVLPF _{POST} | (CRAC) unit before initiative implementation (PRE) and after | | | | initiative implementation (POST) | | 68. | (L*W*H) _{PRE} , | Length (L), width (W) and height (H) of space that required to | | | (L*W*H) _{POST} | cool / have air-conditioning before initiative implementation | | | | (PRE) and after initiative implementation (POST) | | 69. | QOPAQUE _{PRE} , | Overall thermal transfer value of opaque wall / roof before | | | QOPAQUEPOST | initiative implementation (PRE) and after initiative | | | 1,5 | implementation (POST) | | 70. | QFACADE _{PRE} , | Overall thermal transfer value of curtain wall / skylight before | | 70. | QFACADE _{POST} | initiative implementation (PRE) and after initiative | | | Q17(C/(DEPOS) | implementation (POST) | | 71. | OEACADE | Overall thermal transfer value of ventilated curtain wall / | | /1. | QFACADE _{VENT,POST} | | | 70 | ODIDE | skylight after initiative implementation (POST) | | 72. | QPIPE _{PRE} , | thermal transfer value of pipeline before initiative | | | QPPIP _{EPOST} | implementation (PRE) and after initiative implementation | | | | (POST) | | 73. | kW_OPAQUE | Annual average instantaneous power saving (kW) of opaque | | | | wall/roof | | 74. | kW_FACADE | Annual average instantaneous power saving (kW) of opaque | | | | curtain wall / skylight | | 75. | kW_PIPE | Annual average instantaneous power saving (kW) due to | | | | insulated / reflective coating on condensing pipeline installed | | | | at roof top | | 76. | kW_ECF | Rated power of electronically commutated plug fan (ECF) | | | _ | (kW) | | 77. | NECF | Nos. of electronically commutated plug fan (ECF) | | 78. | LF _{ECF} | Annual average load factor of electronically commutated plug | | | | fan (ECF) | | 79. | kW_LGT _{PRE} , kW_LGT _{POST} | Rated power of lighting circuits or lamps (LGT) in operation | | 73. | KVV_LOTPRE, KVV_LOTPOST | before initiative implementation (PRE) and after initiative | | | | implementation (POST) | | 80. | NLGT _{PRE} , NLGT _{POST} | Annual average Nos. of lighting circuits or lamps in operation | | 80. | INLEGIPRE, INLEGIPOST | , , , | | | | before initiative implementation (PRE) and after initiative | | 0.4 | 1.5 .5 | implementation (POST) | | 81. | LF _{PRE} , LF _{POST} | Annual average load factor of equipment before initiative | | | | implementation (PRE) and after initiative implementation | | | | (POST) | | 82. | LF _i | Annual average load factor of lighting circuit or system within | | | | lighting zone (i) | | 83. | LF _{CRAC} | Annual average load factor of computer room air | | | | conditioning (CRAC) unit | | 84. | IFA _{i,POST} | Internal floor area of lighting zone (i) after initiative | | | | implementation (POST) | | 85. | kW TL | Rated power of task lighting (TL) (kW) | | 86. | NTL | Annual average Nos. of task lighting (TL) in operation per day | | 87. | LF _{TL} | Annual average load factor of task lighting (TL) | | 88. | OPHR _{OT} ,yr | Annual operating hours of task lighting (TL) (hrs) | | ()() | OFTHNOT, yr | Allitual Operating Hours of task lighting (TL) (IIIS) | | F | T | | |------|--|--| | 89. | kW_LIFT | Average rated power of lifts (LIFT) per zone (kW) | | 90. | NLIFT | Annual average Nos. of lifts (AHU) per zone in operation | | 91. | LF _{LIFT} | Annual average load factor of lifts (LIFT) per zone | | 92. | %REGEN | Amount of regeneration power per operating power of lift | | 93. | %SAVE | Amount of power saving per operating power of lift | | 94. | kW_IT _{PRE} , kW_IT _{POST} | Total rated power of I.T. equipment group (kW) before | | | | initiative implementation (PRE) and after initiative | | | | implementation (POST) | | 95. | NIT _{PRE} , NIT _{POST} | Annual average Nos. of I.T. equipment group before initiative | | | | implementation (PRE) and after initiative implementation | | | | (POST) | | 96. | LF _{IT,PRE} , LF _{IT,POST} | Annual average load factor of equipment/system before | | | | initiative implementation (PRE) and after initiative | | | | implementation (POST) | | 97. | kW_FD | Rated power of cold fan door (FD) in operation | | 98. | NFD | Annual average nos. of cold fan door (FD) in operation | | 99. | LF _{FD} | Annual average load factor of cold fan door (FD) | | 100. | COP_AC _{POST} | Coefficient of performance of air-conditioning (AC) unit after | | | | initiative implementation (POST) | | | 1 | i initiative implementation (i oot) |